

Beyond RTDs vs Thermocouples

Understanding the New I&C Temperature Choices

Temperature scales

RTD - Resistance Temperature Detectors

- The resistance of the sensor changes according to the temperature
- Resistance Temperature Detector = RTD
- A Pt100 is a "PTC" ; Resistance with "Positive Temperature Coefficient"

0000000000

Pt stands for Platinum, "100" means 100 Ohm at 0°C

Wiring possibilities of RTD Sensors

RTD sensor technologies

Vibration robust Quick response Self calibrating Standard Wirewound thinfilm sensors sensors sensors Pt100 Pt100 Pt100 Pt100 Pt100 -50...400°C -200...600°C -50...500°C -50...200°C -40...190°C **±** Long-term stability **±** Robust **±** Suitable for short **±** Long-term stability **±** Risk reduction **±** Long lifetime and + Vibration resistance **High measurement** immersion depths **High** accuracy Limited measurement plant availability **±** Reliability repeatability Maximum process + High degree of Relative cost Response time safety range □ Susceptible to Limited measurement. mechanical stress Limited measurement range Industrial standard Industrial standard

Innovative sensor technologies

RTD Accuracy – Max. deviation

Accuracy according to DIN EN 60751

Class B 0.3+0.005*|t|

Class A 0.15+0.002*|t|

Class AA 0.1+0.0017*|t|

|t| = absolute value °C

TC – Thermocouple

- Two different metals which are joined at one end
- Changes in the temperature at that junction induce a voltage / electromotive force
- Seebeck Effect
- A TC is never measuring an absolute temperature, but only the temperature difference between measuring point (T1) and the reference point (T ref.)

Thermocouple Types

Calibration w/ANSI color coding		Material	Temp. Range (Continuous)	Temp. Range (Short Term)
Outer	Conductors		(continuous)	
К	+	Chromel	0 to 1100 C	-1800 to 1350 C
	-	Alumel	(32 to 2030F)	(-292 to 2462F)
J	+	Iron	20 to 700 C	-180 to 750 C
	-	Constantan	(68 to 1292F)	(-292 to 1382F)
Е	+	Chromel	0 to 800 C	-40 to 900 C
	-	Constantan	(32 to 1472F)	(-40 to 1652F)
Т	+	Copper	-185 to 300 C	-250 to 400 C
	-	Constantan	(-301 to 572F)	(-418 to 752F)
N	+	Nicrosil	0 to 1100 C	-270 to 1300 C
	-	Nisil	(32 to 2012F)	(-454 to 2372F)
R	+	Platinum/13% Rhodium	0 to 1600 C	-50 to 1700 C
	-	Platinum	(32 to 2912F)	(-58 to 3092F)
S	+	Platinum/10% Rhodium	0 to 1550 C	-50 to 1750 C
	-	Platinum	(32 to 2822F)	(-58 to 3182F)
В	+	Platinum/30% Rhodium	100 to 1600 C	100 to 1820 C
	-	Platinum/6% Rhodium	(212 to 2912F)	(212 to 3308F)

Type K is the most common thermocouple type because it has the largest temperature range.

Type T is most used in low temperature and cryogenic applications.

Type N is used in similar applications to Type K but has less drift over time.

Types R, S, & B are used in very high temperature applications. R is most common in industrial applications.

TC Theory - Why does a Thermocouple drift?

- High temperatures can cause diffusion
- The materials (alloys) change
 - The measuring point enlarges
 The induced voltage changes

Thermocouples vs. RTDs

RTD Advantages

Accuracy over Temp. Range Long Term Stability Repeatability Linear Output

RTD Disadvantages

Slower Response Time (standard construction*) More Fragile (standard construction*) Narrow Temperature Range w~1200°F max.

Thermocouple Advantages

Broad Temperature Range (-300 to ~3000°F) Rugged MI Cable Construction Fast Response Time

Thermocouple Disadvantages

Short- and Long-Term Drift
Susceptible to Signal Noise (EMFs)
Accuracy at Lower Temperatures
Costly Interconnecting Wire

GOLDEN RULES for Contact-Thermometers

- Every contact-thermometer can only measure the temperature of the primary element (e.g. RTD like Pt100)
- So, a thermometer must be designed in such a way that it allows an energy transport:
 - from the medium to the primary element (T Process > T Ambient) Heating
- In reality, every contact thermometer is also influenced by the ambient temperature.
- Please consider, the primary element is located somewhere on this energy path between the process and the environment.

Heat dissipation error

In addition to the **Golden Rules** you need to consider the general heat dissipation error, especially when dealing with barstock thermowells.

Increasing the immersion length helps to avoid the heat dissipation error!

Rule of thumb:

Liquids	At least 5 to 10 times the thermowell tip diameter
Gas	At least 10 to 20 times the thermowell tip diameter

Take away message:

When selecting short barstock thermowells (2.5") use a reduced tip (and a sensor-on-tip-technology)!

Temperature gradient inside a thermometer (simplified)

Minimize heat transfer errors by external insulation

HOW TO increase the insertion length \rightarrow decreasing deviations

- The ^②-best method is to mount the nozzle at an angle.
- Especially in small pipes, you will always find an elbow in a piping system, this gives you space to place a longer thermowell ①.
- But increasing the length will change the resonance frequency of the assembly, please consider a THERMOWELL CALCULATION

Innovative tee and elbow thermowells

No dead legs

No welds

ISA Temperature Presentation

No!

① A thermometer, which is intended to be assembled into a thermowell is spring loaded and will not seal the process!

 This is a thermometer which is designed to be used in a thermowell, installed directly into the process

Barstock Thermowells

Thermowell – stress types

- Mechanical stress
- Vibration stress
- Thermal stress
- Chemical stress / corrosion stress
- Erosion stress

Helical Thermowells

 When objects are exposed to a flow/stream then vortex-induced-vibrations (VIV) can occur and bring the object into natural frequency. This will result in weakening and finally damaging the object.

- Typical solution to reduce the VIV are helical designs on the object.
 One example are industrial chimneys.
- Result of this helical design is a drastic reduction of the VIV.

Advantages of each technology

Surface measurement

- Easy Installation
- Simplified handling / maintenance
- Reduced costs (Engineering, OPEX)
- Safety (risk of leakages)
- Hygienic aspects

Invasive measurement

- Accuracy
- Dynamic behavior (response time)
- Repeatability
- Calibration possibilities

Skin point thermometers

- Modular design
- Sensor replaceable solution
- Components for thermal displacements compensation

Transmitter – Communication protocols

Temperature Transmitters – Technology and Benefits

Linearization of sensor signal

Failure detection

- sensor break
- short circuit

Diagnostics – predictive maintenance

- corrosion detection
- sensor drift
- supply voltage monitoring

Additional functionality

Calculation of differential and average values

2 channel transmitter functions

Sensor backup function

- In case of the malfunction of the first sensor, the transmitter will switch automatically to the second sensor
- Transmission of the diagnostic information about the broken sensor

2 channel transmitter functions

Drift detection

- Alarm signal in case of violation of a limit value (can be set individually)
- Sensors should be calibrated in different intervals. This way drift caused by mechanical or thermal shocks can be identified

Sensor Transmitter Matching – Callendar/van Dusen

- The linearization curve in the transmitter needs to be adjusted to the real sensor characteristic curve → Measuring error is eliminated
- All platinum RTDs can be characterized according to IEC 60751 with the Callendar/van Dusen polynomial (CvD):

$$R(\mathcal{G}) = R_0 \Big[1 + A \cdot \mathcal{G} + B \cdot \mathcal{G}^2 + C \cdot \mathcal{G}^3 \big(\mathcal{G} - 100^{\circ} C \big) \Big]$$

- The coefficients A, B and C can be determined for every individual sensor by a calibration (at least 3-point)
- The coefficients can be stored within the transmitter

ISA Temperature Presentation

Innovative Technologies

G-Force Comparison

Vibration resistant sensors

Conductors in the mineral insulated sheathing welded to the sensor cables

Sensor cap

>Pt100 thin film sensor

Ceramic filling compound

Quick response sensors

How far away from the tip are the sensitive areas of temperature sensors?

Demo sensors for illustration MgO powder removed

No.	Sensor	Distance from the tip
1	Quick Response Sensor	1mm
2	Vibration Resistant Sensor	5 - 7mm
3	Standard Thinfilm	5 – 10mm
4	Standard Wirewound	5 – 20mm (measures an average over its length)

Traceable - INLINE- Calibration with smart technology vs. Offline

Offline fixed point vs. Inline fixed point

Water triple point @0.01°C

Ceramic Curie point @118°C (244°F)

Risk reduction with self-calibrating RTD

Comparison chain

International calibration standard

National calibration standard

Test equipment

Measuring device

Second Process Barrier – Dual Seal

Temperature Assembly with second process barrier in combination with a 2-channel transmitter.

- Channel 1: Temperature signal (4 to 20 mA)
- Channel 2: Configured as TC, if pressure switch is turning a signal "sensor breakage" is generated
- Temperature signal stays alive

Technical Feature	Benefit	Added Value
 Second process barrier in case of thermowell integrity failure Signal to PLC if pressure in neck is rising to 3 bar +/-1bar 	 Additional health information from measurement device Temperature signal stays alive 	 Increased process safety Reduced unplanned shutdowns Health status information

Any medium

Pressure switch detects a pressure change

It sends a signal to the 2nd channel of the transmitter

Temperature signal stays alive at all times

Seals are compressed – medium is contained

Adam Hughes & Greg Pryor

The problem with connectivity...

...the solution

- Convenient device operation from a distance
- •Easily check the status of all your devices within Bluetooth® range
- Encrypted data transmission ensures highest security

SA Temperature Presentation

Thank you for joining us!!

If anyone has questions, please put them in the chat and we will do our best to answer them.

Slide 42